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bstract

Adequate interpretation of mass spectrometry data can yield valuable biomarkers. However, spectrum interpretation is a complicated task. This
aper reviews the various factors that determine a sample’s spectrum and demonstrates the role of these factors in the interpretation process. We
erive a simulation model that adequately predicts the expected spectrum based on known sample content and, in the reverse mode, obtain an

nalysis model that adequately fits an observed spectrum based on the hypothesized sources of variation.
© 2006 Elsevier B.V. All rights reserved.
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tion, numbered (1–20), along the proteins’ route from sample to
spectrum (summarized in Table 1).

Fig. 1. A practical example. The mass spectrum of the myoglobin molecule
(M = 16,951 Da) shows peaks at several locations in the spectrum because
molecules form complexes and/or carry multiple charges. Hence, the peak posi-
tions, which are indicated by the peak labels, are all related to the molecular
weight of myoglobin (M), by multiplying M with a fraction. The nominator is the
number of myoglobin molecules in the complex, which corresponds to that peak.
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. Introduction

Mass spectrometry is an analytical technique that analyses a
hysical sample (e.g. a peptide/protein mixture) and generates
“mass spectrum” with peaks that represent the masses and the
mounts of the sample components. However, retrieving these
asses and amounts from a mass spectrum is a complicated task

nd requires an adequate interpretation of the spectrum.
A mass spectrum usually contains many more peaks than

he number of different molecule species present in the sam-
le, because molecules form complexes and/or carry multiple
harges and therefore appear at several locations as peaks in
he spectrum. Fig. 1, for example, shows a mass spectrum of

single protein, which nevertheless contains a large number
f peaks. Even apparent singleton peaks are often still a mix-
ure of several smaller peaks, leading to a right-skewed peak
hape. This is primarily due to matrix adducts, post-translational
nd on-chip modifications, and isotopic variants. The broadness
f such peaks depends on the heterogeneity of the correspond-
ng molecules. Peak areas on the time of flight (TOF) scale are
ssumed to be proportional to the measured concentrations of
he corresponding molecules [1], but only if overlapping peaks
re properly resolved [2].

Taking all the different sources of variation in mass spectra
nto account should enable the exact determination of the
ariation contributed by individual sample proteins. Corre-
ating these sample protein variations to sample phenotypes

ay facilitate the discovery of biomarker proteins (i.e. those
roteins which are expressed differently between different
henotypes).

Section 2 presents a theoretical view on sources of variation
n surface enhanced laser desorption/ionization time of flight
SELDI-TOF) analysis. Section 3 illustrates this theoretical view
ith real example data from designed experiments. Section 4
evelops and applies a statistical analysis approach to quantify
he discussed sources of variation in the example data. The final
ection summarizes and discusses our findings on sources of
ariation in SELDI-TOF and related techniques.

. SELDI-TOF technology and sources of variation

For SELDI a biological sample (usually a protein solution) is

ut on a pre-coated stainless steel slide. The coating ‘enhances’
he surface to bind preferentially a particular class of proteins
ased on their chemical properties. Different coatings give dif-
erent ‘chip types’ which bind to different classes of proteins [3].

T
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a
a

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ashing the chip removes weakly bound proteins, which have
ow affinity for the specific chip. Such fractionation reduces the
omplexity of a mixture and prevents high-abundance proteins
uppressing the low-abundance proteins. The protein fraction,
hich is retained by the chip is then desorbed and ionized

s in the matrix assisted laser desorption/ionization (MALDI)
ethod. The subsections below describe the SELDI process in
ore detail and highlight the most important sources of varia-
M. Dijkstra et al. / J. Chromatogr. B 847 (2007) 12–23 13
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he denominator is the number of charges, which the complex carries. For exam-
le, the singly charged myoglobin peak comprises one myoglobin molecule and
ne proton (unit mass and unit charge), has m/z = (1 × M + 1)/1 = (1/1) × M + 1
s label. (a) Shows an overview of the full spectrum (0–90 kDa) and (b) shows
close-up of the mass range 20–90 kDa.
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Table 1
Sources of variation

Short description Impact on the spectrum

(1) Different chip types bind different classes of proteins Determines the peak set
(2) Washing the chip removes weakly bound proteins Removes peaks. Reduces peak areaa

(3) Competition for sites in the matrix Peak areaa

(4) Molecules can get more than one charge Many more peaks
(5) Laser energy Peak area (0–100%). Peak resolution
(6) Proteins can denature. Denatured proteins have larger surface area Peak areaa

(7) Proteins with larger surface area can carry more charge Peak areaa

(8) Molecules form intermolecular complexes (cluster ions) Many extra peaks (∼80): m-mers (m = 1. . .10), 8
satellite peaks per m-mer

(9) Complexes formed with salt ions (which have mass and non-zero charge)
from the washing buffer

Peak shift

(10) Fragmentation of molecules and complexes Chemical noise—many minor peaks (<8 kDa)
(11) Competition for being protonized by the matrix Peak areaa

(12) Electric field potential Peak TOF-position. Peak area (3–14%)
(13) Delayed extraction Peak resolution. Peak area (2–17%)
(14) Detector sensitivity determines multiplication factor of incoming ions

and of electric noise
Peak area (4–26%). Noise level

(15) Electric noise Noise level (constant across spectrum)
(16) Detected air molecules because flight tube is not completely vacuum Noise level (constant across spectrum)
(17) Digitizer rate Number of data points
(18) m/z-Calibration Peak shifta

(19) Post-translational modification Peak shift
(20) Variation in the density of the matrix crystal Spectral areaa

Table 1 summarizes the discussed sources of variation (1–20) and their impact on the spectrum. We analyzed our experimental data for the sources (4) multiple
c menta
( or no
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harges, (5) laser energy, (8) formation of intermolecular complexes, (10) frag
13) delayed extraction, (14) detector sensitivity, (15) electric noise, (16) detect

a We did not exactly quantify all the sources of variation.

.1. From sample to chip

Different SELDI chip types have surfaces, which range
rom chromatographic chemistries that bind many different
olecules, to surfaces with a specific biomolecular affinity

e.g. antibodies, receptors, enzymes and ligands) that bind one
pecific molecule or molecular class. After putting the sam-
le on a chosen chip type (1), and washing (2) weakly bound
roteins away, the sample is mixed with small photosensitive
olecules, which causes the entire mixture to crystallize and

orm a so called matrix on the chip as it dries. These photosen-
itive (matrix) molecules facilitate desorption and ionization of
roteins (below). Proteins compete for sites in the matrix crys-
als (3) if the protein concentration is so high that not all proteins
an be incorporated in the matrix. Proteins that are more easily
mbedded will then have a higher concentration in the matrix.
he sample is then put into an almost vacuum chamber, the so
alled flight tube.

.2. From chip to detector

SELDI shares several characteristics with MALDI. We refer
o Chapter 3 in ref. [4] for an overview of the MALDI method.
enobi and Knochenmuss [5] give an extensive review of ion

ormation in MALDI mass spectrometry.
.2.1. The desorption/ionization-process
A short laser pulse hits the crystal structure and excites the

atrix molecules. The energy of the excited matrix molecules

c
c
h
p

tion of molecules and intermolecular complexes, (12) electric field potential,
ise, (18) m/z-calibration, (19) post-translational modifications.

eads to excitation of other matrix molecules, and is converted
o thermal energy which heats up the crystal locally to around
000 K within a fraction of 1 ns [5]. Excited matrix molecules
an protonate another matrix or protein molecule. The over-
eated part of the crystal explodes together with the embedded
roteins into a plume. The physics of this process is not fully
nderstood. There are two types of ionization processes: pri-
ary ion formation that occurs during and immediately after

he laser pulse, and secondary ion forming reactions that take
lace in the plume later on [5]. The plume expands but keeps a
ather high density and a temperature of 500 K for 100 ns [5],
ausing many collisions between proteins and matrix molecules
r matrix clusters. Some matrix molecules are protonated dur-
ng the primary ion formation, i.e. received a proton. These
ollisions induce reactions, which include matrix-protein reac-
ions where the protonated matrix transfers its proton to the
ncharged protein and creates a charged protein. The process
an repeat, such that proteins get multiple charges (4). In the
as phase, proteins have higher proton affinities than the matrix
olecules [5]. Different kinds of matrix molecules can be used

n the SELDI analysis. The two most common are alpha-cyano-
-hydroxy cinnamic acid (enables efficient laser desorption and
onization of small proteins, e.g. <15 kDa) and sinapinic acid
enables efficient laser desorption and ionization of large pro-
eins, e.g. >10 kDa) [6]. In our spectra (e.g. Fig. 1), the singly

harged molecules were generally more abundant than doubly
harged ones. Remarkably, the length of the laser pulse does not
ave much influence on mass spectra as long as the total energy
er pulse stays constant [5]. Using more laser energy (5) on the
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ther hand generates more ions and influences the mass spectra
see below).

Proteins often denature (i.e. unfold) in an acidic envi-
onment [7,8], such as the washing buffer used for SELDI.
enatured proteins have a larger surface area (6), and
olecules with a larger surface area can carry more charge (7)

9].

.2.2. Intermolecular complexes
Before, and maybe even during the laser excitation, some of

he molecules form intermolecular complexes, also known as
luster ions (8), which are non-specific, non-covalent adducts
10]. The formation of these complexes increases the num-
er of peaks in the spectrum enormously. Self-association or
-merization is the process where several (m = 2 or more)
rotein molecules link to each other and form complexes
10,11]. Some molecules already have a net charge before
aser excitation due to complexes formed with salt ions (9)
e.g. K+ and Na+), which are present in a washing buffer
4]. According to the authors of ref. [5], there is generally
ittle prompt fragmentation in the plume and most fragmen-
ation (10) happens by the decay of metastable ions in the
ight tube, partially induced by collisions with background
as.

As discussed above, during crystallisation there is a compe-
ition for lattice sites (3) and the presence of one analyte may
revent another from being included into the MALDI crystal
4]. During ionization in the plume, analytes compete (11) for
rotons that are transferred by matrix molecules and if a proto-
ated analyte collides with an unprotonated one which has the
igher gas phase basicity, it may pass its proton to the collision
artner [5]. Therefore, the presence of one analyte may dimin-
sh the signal intensity of another. This phenomenon is called
suppression effect’ [5].

.2.3. Separating molecules
The physical principle of the TOF analyzer in SELDI is that

ublimated molecules, which have a different mass (m) over
harge (z) ratio (m/z) are accelerated differently and enter the
ight tube with different velocities. Therefore, the time for an ion

o pass the flight tube depends on its m/z. The relation between
OF and m/z can be calculated by using the law of energy con-
ervation. The electron volt (symbol eV) is a unit of energy. It is
he amount of kinetic energy gained by a free particle, which
as a charge that is equal to the elementary charge when it
asses through an electrostatic potential difference of 1 V, in
acuum. Both an electron (−1) and a proton (+1) have a charge
hich equals the elementary charge, but with opposite sign, such

hat they will be accelerated in opposite directions. A protein
hich passes through a potential difference of U V, acquires

n energy of V = U eV for each charge (12). Hence, a protein
ith a net charge z acquires energy zV. The energy expresses as

2
inetic energy, (mv /2), where m is the protein mass and v is its
elocity:

V = 1

2
mv2. (1)

t
m
i
i

gr. B 847 (2007) 12–23 15

Hence, the TOF to the detector equals

OF = x

v
= x

√
m

2zV
, (2)

here x is the length of the flight tube.

.2.4. Delayed extraction
The laser excitation initializes the desorption/ionization-

rocess. It creates a plume of ions, which may have different
nitial velocities in the direction towards the detector. The elec-
ric field accelerates the ions and increases their initial velocity
owards the detector. If the electric field is switched on syn-
hronously with the end of the laser pulse, then the ions of a
iven m/z all get the same increase in velocity towards the detec-
or because they all pass through the same electrostatic potential
ifference. Ions of a given m/z value which have a wide varia-
ion in initial velocities will have the same wide variation in their
nal velocity. Such ions show a broad distribution in their TOFs

o the detector and hence induce a broad peak in the spectrum.
If the electric field is not switched on synchronously with the

nd of the laser pulse, but after a certain delay (13), then each
on will fly a certain distance into the acceleration trajectory
ccording to its initial velocity. Ions with a higher initial velocity
y further into the acceleration trajectory. The slower ions are
ccelerated over a longer distance, which partially compensates
or their initial slower velocity. The optimal delay depends on the
articles’ m/z. More precisely, the optimal delay theoretically is
roportional to the square root of the particles’ m/z [12], and
aises from 1 Da for low masses (∼100 Da) up to more than
0 Da for 100 kDa molecules [13].

.2.5. Chemical noise
If molecules and intermolecular complexes collide with each

ther or with the background gas, a small molecule group can
plit off. This phenomenon is called fragmentation. We now
iscuss how the position in the flight tube, where the fragmen-
ation of the intact molecule occurs, affects the peak position.
f the fragmentation occurs before the acceleration, then each
ragment appears in the spectrum at the position, which cor-
esponds to its own m/z. If the fragmentation occurs after the
cceleration, then all the fragments appear at the same posi-
ion in the spectrum. This position corresponds to the m/z of the
ntact molecule. If the fragmentation occurs during the acceler-
tion, then each fragment appears in the spectrum between the
osition corresponding to the m/z of the intact molecule and the
osition corresponding to its own m/z. The fragmentation most
ften occurs in the free flight tube, i.e. after the acceleration took
lace [5].

We consider a detected molecule, which was not present as
ne molecule in the original sample, as “chemical noise” (10).
hemical reactions between different molecules and/or frag-
entation cause chemical noise. The chemical reactions can
ake place between sample protein molecules, matrix molecules,
olecules from the washing buffer and molecules from sample

mpurities. Some of the chemical reactions use energy originat-
ng from the laser.
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.3. From detector to spectrum

Basically, the detector measures the period between the
oment the electric field switches on and the moment a particle

its the detector. In this paper, we focus on the mass spec-
ra produced by the PBS-II instrument [6] implemented in the
iphergen ProteinChip System. When molecules strike the first
etector plate, the detector plate releases a certain multiple of
lectrons. The released electrons strike another detector plate,
hich again releases a certain multiple of electrons. At each
etector plate, the multiplication process repeats. The detector
ain is defined by the ratio of the eventually released electrons
nd the number of molecules striking the first detector plate.
he detector gain strongly depends on the kinetic energy of the
etected molecules [14]. The user can scale the detector gain by
machine setting called ‘detector sensitivity’ (14) which corre-

ponds to the potential difference between the detector plates.
part from electrons that are released due to particles striking

he detector, there is coincidental electron emission from each
late inside the detector due to thermal energy. This is called
dark current’ or ‘electric noise’ (15). The molecules fly in a
ight tube, which is close to vacuum. Because the flight tube

s not completely evacuated, coincidentally air molecules are
etected too (16). Dark current and detected air molecules induce
reasonably flat basic signal level, which is unrelated to sample
ontent. The detector counts all the released electrons during a
ime interval and sends these numbers via a detector signal to the
omputer. A spectrum comprises many (say 15,000) consecu-
ive time intervals. The user configurable detector frequency, the
o-called digitizer rate, (17) determines the length of the time
ntervals.

.4. The spectrum

The computer displays the counted totals per time interval in
he spectrum. Because the time intervals are small, the spectrum
an be interpreted as an almost continuous, ‘smoothed’ his-
ogram (time versus numbers of electrons). Within the spectrum,
e distinguish one baseline and zero or more peaks (definitions

ollow). Dark current and detected air molecules together form
he sample-independent part of the baseline. The chemical noise
orms the sample-specific part of the baseline. The detection of
olecules, which all have the same molecular formula and occur

n the same charge state, induces a signal, which we define as a
ingleton peak. A singleton peak may show overlap with other
ingleton peaks. We define a peak in the spectrum as the sig-
al, which is induced by one or more neighboring singleton
eaks together. A (singleton) peak area is assumed to be pro-
ortional to the corresponding detected numbers of molecules
1].

.4.1. The TOF-spectrum and the m/z-spectrum
Theoretically, Eq. (1) converts the TOF-axis to an m/z-axis by
m/z) = (2 eV/v2) = (2 eV)/(x/TOF)2 = (2 eV)/(x2)TOF2.
owever, in practice, linear deviations from the expected rela-

ion are observed (18). A calibration equation, which deals with
he linear deviation by inserting the extraction delay (t0) and the

M
(
h
m

gr. B 847 (2007) 12–23

alibration parameters (α̃ which we use as a temporary dummy
ariable, and β), is (m/z) = α̃(2 eV/x2)(TOF − t0)2 + β.
ubstitution of α̃(2e/x2) by α (i.e. a new calibration param-
ter which replaces α̃) gives the calibration equation:
m/z) = αV(TOF − t0)2 + β. Measuring the TOFs of molecules
ith known masses yield the calibration parameters α and β.
ifferent spectra may have different α and β [15]. Ciphergen

llows the user to consider t0 as an extra calibration parameter,
hich can be estimated together with α and β from the data.
more detailed discussion about the calibration applied by

iphergen, and also algorithms for the alignment of mass
pectra, can be found in ref. [15]. Conversion of the horizontal
xis from TOF to m/z according to the calibration equation
hanges the areas under the curves. On the one hand, at a given
eak position on m/z-scale, the areas are still proportional to
he numbers of molecules when comparing different spectra.
n the other hand, at different peak positions within one

pectrum, say one in the lower and another in the higher
/z-range, detecting the same numbers of molecules results in
ifferent peak areas [2]. Therefore, for quantifying (detected
mounts of) molecules, the data are preferably analyzed on
he TOF-scale, and not on the m/z-scale. The next section
dentifies baseline and peaks in a practical example spectrum.
he following subsection discusses some remaining sources of
ariation.

.5. Other sources of variation

.5.1. Post-translational modifications
Molecules form intermolecular complexes by non-specific

inding. Binding can also be biology specific. Post-translational
odifications (19) play an important role in biological path-
ays. Phosphorylation, for example, is a chemical modification
f certain amino acids that can switch the activity of a protein on
nd off. Therefore, the amount of phosphorylation for a certain
rotein can provide important information about the state of a
ell. This modification adds 80 Da to the mass of the protein,
nd thus leads to a shift in peak position [16].

.5.2. Averaging spectra
A final spectrum is an average of spectra acquired by several

ndividual laser shots. Each single laser shot is fired on a different
osition on the dried droplet. The crystal density and size varies
ith the position within the dried droplet (20). The Ciphergen

oftware automatically removes shots, which generate a signal
hat is too high or too low [6].

. A practical example

.1. Sample preparation

Myoglobin (16,951 Da), a single-chain protein of 153 amino
cids, is the primary oxygen-carrying pigment of muscle tissues.

yoglobin can contain a non-covalently linked heme group

616 Da) in its center [7]. Denatured myoglobin releases the
eme group. We applied non-denatured as well as denatured
yoglobin to different spots on an NP20-chip. The NP20-
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hip mimics normal phase chromatography [6]. After a short
ncubation period, we washed the chip twice with buffer and
nce with distilled water and applied the ‘matrix molecules’,
saturated sinapinic acid (SPA, 224 Da) solution, to the chip.
fter drying, we put the chip in the vacuum chamber, hit

he dried matrix with a laser (220 �J) and applied an elec-
ric field (10 kV) in positive ion mode after a short delay
f ∼1000 ns. This delay was chosen based on myoglobin’s
olecular weight, according to the Ciphergen software [6].
hirty-five shots were averaged in the final spectrum, which

s shown in Fig. 1. The final spectrum does not include the
wo warming shots with an increased laser energy of 5 �J.

e used a detector sensitivity of 9 and a digitizer rate of
50 MHz.

.2. Peak positions

The m/z-locations of the peaks in the spectrum cor-
espond to m/z-values of the intermolecular complexes
ormed. Let the non-negative variables m0, m1 and m2,
espectively, denote the numbers of myoglobin, SPA and
eme molecules that comprise the complex. The set
m0 × 16,951 + m1 × 224 + m2 × 616 + p × 1} Da describes the
asses of possible complexes, where the positive variable p

enotes the number of extra protons, obtained from the matrix.
he set {(m0 × 16,951 + m1 × 224 + m2 × 616 + p × 1)/p} Da
escribes the m/z-values of these complexes. However, frag-
ents of these complexes, salty adducts and various atomic

sotopes can generate peaks as well. In our data, we see the
atellite peaks at about +206 Da to the right of the myo-
lobin peak, instead of at the described +224 Da, which is
he molecular mass of the SPA molecules. Perhaps the acid
orms a covalent ester bond with the protein alcoholic side
hains, or perhaps the acid forms a covalent peptide bond
ith the amide of the protein via a condensation reaction. In

ither case, a water molecule (18 Da) is one of the products.
ence, 224 is better substituted by 206 in the formula above:
(m0 × 16,951 + m1 × 206 + m2 × 616 + p × 1)/p} Da. We now
se Fig. 1 to elucidate on these peaks and we show that some
omplexes are more likely to occur than others.

The singly charged myoglobin monomers (i.e. m0 = p = 1)
ause the peak at m/z = 16,952 Da. The singly charged m0-mers
m0 = 2, . . ., 5 and p = 1) cause peaks at m0 × 16,951 + 1 Da.
eaks for m0 > 5 exceed the mass axis. The doubly charged
yoglobin molecules (m0 = 2, . . ., 10 and p = 2) cause peaks at

(m0 × 16,951 + 2)/2) Da. Doubly charged m0-mer peaks have
lmost the same m/z value as singly charged (m0/2)-mer peaks,
or even values of m0, respectively. Such peaks will show large
verlap.

Fig. 2a shows that the singly charged myoglobin proteins
i.e. m0 = p = 1) occur in complex form, linked to m1 = 1, 2, 3,
. . (reactive forms of the) SPA molecules. Myoglobin which
s non-covalently linked with a heme group, occurs as a peak

t the position corresponding to m0 = m2 = 1, see, e.g. Fig. 2b.
he non-covalent linking might be both biologically specific
s it is in vivo, or non-specific like the matrix adducts we
bserve.

e
A
w

roup (616 Da) in its center [7] (b). The black line is the observed data. The
ed/brown curve is the fitted mixture model and the blue dashed curves are the
tted individual components.

.3. Peak areas

The area of a peak is proportional to the corresponding num-
er of detected ions within a given spectrum [1]. The mutual
epulsion between ions with charge of equal sign causes the ion
loud to expand during its flight. We expect that the numbers
f detected ions approximate the numbers of ions, which were
ormed during the desorption/ionization-process, with a certain
rade-off for ions with a larger m/z (because these have a larger
OF and their ion cloud expands more, so more ions miss the
etector and are not counted). Overlap between adjacent peaks
omplicates the estimation of individual peak areas. Section 4
resents a method to resolve overlapping peaks by using normal
istributions. In that section, we use the areas of our spectral
omponents to quantify described sources of intraspectral and
f interspectral variation. Section 4.4 shows how the peak areas
re related.

.4. Peak shape
Singleton peaks can be slightly skewed to the right due to the
xpansion of the ion cloud and due to the isotopic distribution.

(singleton) peak is induced by an ion cloud. If all molecules
ithin an ion cloud travel at constant speed towards the detector
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Fig. 4. The applied electric field potential. We measured the chip with the myo-
globin sample several times and applied a different field potential in each run.
We cut the doubly charged myoglobin peak from each spectrum and show them
together in one “spectrum”, above (z = 2), and we show the singly charged
myoglobin peaks below (z = 1). The peak labels indicate the corresponding m/z-
position (Da), and the applied field potential (kV). A higher voltage leads to
faster ions, which have a shorter TOF to the detector and induce more electrons
when striking the detector. This leads to larger peak areas. Ion clouds, which
have a longer TOF expand more and generate broader and lower peaks; hence,
the singleton peaks show less overlap if the applied voltage is higher. Surpris-
ingly, the size of the doubly charged peak increases more rapidly than the size
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nd the molecule density is point symmetric around the center
f the ion cloud, then the generated peak would be symmetric
round its mean. However, molecules within one ion cloud travel
ith different velocities towards the detector and the ion cloud

xpands. An ion cloud, which expands more during detection
nduces more right skewness in the peak shape. The detection
f ion clouds takes longer if the ion clouds have a longer TOF,
uch that peak skewness increases with TOF. The authors of ref.
17] present the peak shape as a function of the expanding ion
loud. However, Fig. 2 shows that the singleton peaks, which
e analyzed did not show a large deviation from the symmetric
ormal distribution.

The isotopic distribution is another minor cause of singleton
eak right-skewness. Except for the lower TOF-range (shown
n Fig. 3), SELDI resolution is too low to observe the individ-
al isotopic peaks. In other words, the individual isotopic peaks
ccur too close to each other (i.e. at mass differences of 1 Da at
/z-scale) to be individually observed. After longer TOFs the

ndividual “isotopic” ion clouds, which travel close to each other
ue to their small mass differences, expand and overlap. These
sotopic ion clouds then cause overlapping isotopic peaks, which
ogether generate one ‘singleton peak’. The isotopic distribu-
ions are skewed to the right for low molecular weight peaks,
ut tend quickly to a normal distribution for the higher masses.
ence, the isotopic cluster of a given molecule species gener-

tes one apparent singleton peak in the spectrum, which can be
odeled with one single normal distribution.
A lower voltage setting leads to longer TOFs (cf. Eq. (2))

hich leads to a larger separation between the centers of ion
louds and thus to better separation between different ions. On
he other hand, a “singleton” ion cloud expands more if it has

longer TOF. Both larger ion clouds and a larger separation

etween those clouds lead to broader peaks. Fig. 4 shows that the
verlap between the singleton satellite peaks caused by singly
harged complexes comprising exactly one myoglobin molecule
ncreases for lower voltage settings (9–25 kV shown). The over-

ig. 3. Isotopic resolution in the lower m/z-range. We analyzed a new sample
omprising the two commonly used matrix molecule species, alpha-cyano-4-
ydroxy cinnamic acid and sinapinic acid. The close-up of the low molecular
ass range illustrates the most elementary singleton peaks which can occur

n mass spectra, i.e. the isotopes of the molecule, having different numbers
f neutrons (1 unit mass, no charge). The theoretical mass difference between
wo adjacent isotopes is 1 Da. However, the overlap between adjacent (isotopic)
eaks causes slight mass shifts in the corresponding local modes. We labeled
ome local modes with the corresponding mass position in the spectrum.
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f the singly charged peak, when applying a higher voltage. The peak labels
how that a higher applied voltage leads to a larger mass estimate. The machine
hould be recalibrated when changing the voltage settings.

apping singleton peaks together induce one single right-skewed
eak in the spectrum.

.5. Baseline

Dark current and detected air molecules contribute relatively
ittle extra variation to the signal. We assume that this varia-
ion does not depend on TOF. It can be observed in a region,
hich does not contain peaks caused by detected ions. Detected
atrix molecules and detected molecule fragments cause chem-

cal noise. Fig. 1 does not show much chemical noise. Fig. 5
isplays myoglobin spectra, which are measured with differ-
nt laser energies applied. It shows that the chemical noise is
ore abundant when higher laser energies are applied. Prob-

bly there is more fragmentation. The chemical noise is more
bundant in more complex samples comprising many different
rotein species due to fragmentation and metastable decay due
o phenomena like collisions with the background gas [4,5]. The
hemical noise shows exponential decay with TOF [2].

.6. The machine parameters

Fig. 4 shows that a higher applied voltage (which creates an
lectric field with a larger potential difference) generates faster
ons, which have a shorter TOF to the detector and induce more
lectrons when striking the detector, leading to higher peaks.
on clouds, which have a longer TOF expand more and generate
roader and lower peaks. Surprisingly, the height of the doubly

harged peak increases more rapidly than the size of the singly
harged peak.

The detector with higher sensitivity settings generates more
lectrons when detecting the same amounts of ions, leading to
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Fig. 5. The applied laser energy. We measured the same myoglobin sample five
times with different laser energies (210, 220, . . ., 250 �J) in each run. Spec-
tra which are acquired with higher laser energies have a larger area under the
curve, because applying higher laser energies generates more ions during the
desorption/ionization-process; a 210 �J laser pulse generates almost no ions
which leads to small peaks, while a 250 �J laser pulse generates many ions
which leads to large peaks with low resolution. Higher laser energy increases
the thermal energy of the ions, resulting in more and harder collisions between
the ions and increasing fragmentation and chemical noise. The increased ther-
mal energy expresses as an increased kinetic energy, resulting in higher initial
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Fig. 6. The detector sensitivity settings and chemical noise. We measured the
same myoglobin sample eight times, with different sensitivity settings (1, 2, . . .,
8) in each run. (a) Shows an overview of the full spectrum and a close-up of
the singly charged myoglobin peak. Higher sensitivity settings generate larger
peaks and does not affect the resolution considerably. The overview shows many
reproducible peaks between 20 and 40 �s. (b) Shows a close-up of the spectra
between 26 and 27 �s, acquired with the above settings. The y-axes were scaled
t
A
e
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17,096 Da when the delay is 2007 ns, which is a difference of
176 Da.

The repeated measurements in Fig. 6b show a close-up
(26–27 �s) of the reproducible peaks, which we observe in the

Fig. 7. The extraction delay. The time lag between the end of the laser pulse
and the moment the electric field switches on is called the extraction delay. Only
elocities. The tail at the left side of the peak at 80 �s, which is best observed in
he 250 �J spectrum, might be explained by the short extraction delay (see text
or details).

igher peaks, without considerably affecting peak shape and
eak resolution (Fig. 6a).

The energy of the laser is the only machine parameter which
normously affects the desorption/ionization-process and the
enerated number of ions; a 210 �J laser pulse generates almost
o ions which leads to small peaks, while a 250 �J laser pulse
enerates many ions which leads to large peaks with low reso-
ution (Fig. 5). Higher laser energy increases the thermal energy
f the ions, resulting in more and harder collisions between the
ons and increasing fragmentation and chemical noise.

The time lag between the end of the laser pulse and the
oment the electric field switches on is called the extraction

elay. Only one position in the spectrum has optimal resolution.
longer delay shifts this position to the right (ratio explained

bove), and leads moreover to smaller peaks, probably because
ome of the ions are accelerated over a shorter distance and get
ess kinetic energy (Fig. 7).

Fig. 8 plots the area of the singly charged myoglobin peak
ith default machine settings, and varying one setting at a time

rom low to high. The largest peak was scaled to 100% and the
ther peaks were scaled accordingly. The observed impact of
he machine settings on the peak area are: (i) the laser energy
0–100%), (ii) the sensitivity setting (4–26%), (iii) the extraction
elay (2–17%) and (iv) the applied voltage (3–14%).

Moreover, Figs. 4, 5 and 7 show that changing the machine
ettings: (i) the applied voltage, (ii) the applied laser energy and
iii) the extraction delay, assign other m/z-values to the “same
eak”; hence, the machine should be recalibrated when chang-
ng these machine settings. We give two examples. The singly

harged peak in Fig. 4, measured with 25 kV gets the label
7,103 Da, while the peak measured with 9 kV gets the label
6,817 Da, which is a difference of 286 Da. The same peak in
ig. 7 gets the label 16,920 Da when the delay is 241 ns, and

o
p
p
a
t

o enable a direct comparison. Some of the reproducible peaks have a mass label.
lthough these peaks probably originate from our sample molecules, we cannot

xplain their positions easily by fragmentation, complex formation and multiple
harges. We consider these peaks as chemical noise.
ne position in the spectrum has optimal resolution. A longer delay shifts this
osition to the right (ratio explained in the text), and leads moreover to smaller
eaks, probably because some of the ions are accelerated over a shorter distance
nd get less kinetic energy. The machine should be recalibrated when changing
he sensitivity settings.
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Fig. 8. Machine parameters and peak area. The plot shows the area of the singly
charged myoglobin peak with default machine settings, and varying one setting
at a time from low to high. The largest peak was scaled to 100% and the other
peaks were scaled accordingly. The observed impact of the machine settings
on the peak area are: (i) the laser energy (0–100%), (ii) the sensitivity setting
(4–26%), (iii) the extraction delay (2–17%) and (iv) the applied voltage (3–14%).

Fig. 9. Normal distributed detector noise. Electric noise and coincidentally
detected air molecules from the free flight tube contribute little to the over-
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ll variation in the signal. The histogram of the detector signal in a region where
e expect no protein peaks, is approximated with a normal distribution with
ean 4.6 and indeed a very small variance <0.0002.

egion (20–40 �s). These peaks are probably caused by frag-
ents of sample molecules, which we call chemical noise.
Electric noise and coincidentally detected air molecules from

he free flight tube contribute little to the overall variation in the
ignal. Fig. 9 approximates the histogram of the detector signal
n a region where we expect no protein peaks, with a normal
istribution with mean 4.6 and indeed a very small variance
0.0002.

. Analyzing our practical example

This section uses statistical mixture models to quantify the
ajor sources of the variation of the spectral components

described in Section 2.4) in our practical example data (intro-
uced in Section 3). The first subsection below introduces the
tatistical mixture model analysis of the spectrum. The sec-
nd subsection defines our mixture model components and
he third subsection shows to fit our model to the spectrum.

he fit of the mixture model produces estimates of the posi-

ions and the proportions of the spectral components, including
eak positions and peak areas. The fourth subsection quantifies
he variation in the positions and the proportions of the spec-

w
p
p
o

gr. B 847 (2007) 12–23

ral components and connects these variations to the associated
ources.

.1. Simulation and analysis model

We study spectra with the x-axis on TOF-scale. Such a spec-
rum represents the observed TOFs of all the detected molecules,
r more precisely, it represents the observed TOFs that corre-
pond to the counted electrons. Each of the counted electrons
riginates either from a detected molecule species, or from dark
urrent. We assume that the TOF that corresponds to a counted
lectron follows a probability density distribution. The origina-
ion of the electron determines the exact distribution it follows.

e assume that the TOF of a detected molecule species (e.g. a
yoglobin monomer) or complex (e.g. a myoglobin dimer) is

erived from a unique normal distribution. Additional observa-
ions (i.e. due to dark current, detector noise) are present with

ore-or-less equal probability of occurrence along the spectrum,
hich we hence model with a uniform distribution. We choose

nd justify these distributions based on empirical considerations,
.e. the proposed distributions fit well to the observed ones, as
llustrated in the practical data (e.g. Fig. 2). The origination of
counted electron cannot be observed with absolute certainty.
o, the observed TOF is a finite mixture of multiple distribu-

ions. The next section shows how we describe a spectrum with
mixture model. Our model adequately simulates the expected

pectrum based on known sample content, and in the reverse
ode, adequately fits the observed spectrum.

.2. Mixture components

We now define the individual component distributions and
heir mixture distribution. The spectrum can be interpreted as a
istogram with times of flight, say t1, t2, . . ., tI, ordered from
hort (left) to long (right) on the x-axis. Let n1, n2, . . ., nI, denote
he counted numbers of electrons which arrived after the times
f flight t1, t2, . . ., tI, respectively. The uniform distribution is
efined by

0(t) = 1

t1 − tI
, for t1 ≤ t ≤ tI .

Suppose that the spectrum contains M peaks. The normal
istributions j (j = 1, 2, . . ., M) are defined by

j(t) = 1

σj

√
2π

exp

(
− (t − μj)2

2σ2
j

)
,

here μj (mean) and σj (standard deviation) are indexed by peak
umber. The finite mixture distribution is described by

(t) =
M∑

j=0

pjfj(t)
here fj(·) is the probability density function of the jth com-
onent. A distribution fj (j = 0, 1, 2, . . ., M) occurs with a
roportion pj ∈ [0, 1], and

∑M
j=0pj = 1, such that the area under

ur finite mixture distribution equals one. Superimposing the
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Fig. 10. Log-linear peak areas. The five triangles represent the peaks which
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ndividual distributions and their mixture distribution on top of
he spectrum after multiplication with the area under the spec-
rum, shows the fit of the model to the spectrum, see p. 450 in
ef. [18].

.3. Parameter estimation

Section 3.2 predicts the expected peak positions on m/z-scale.
e use the calibration equation to calculate the correspond-

ng peak positions on TOF-scale and use these to initialize the
arameters μj (j = 1, 2, . . ., M) as described in ref. [2]. We ini-
ialize σj = 0.1 (j = 1, 2, . . ., M), and pj = (1/(M + 1)) (j = 0, 1, 2,
. ., M). We now briefly describe how we iteratively apply the
M-algorithm [19] to estimate the maximum likelihood values

or the parameters in our finite mixture model. Each iteration
onsists of an E- and an M-step.

The E-step calculates the conditional component member-
hip probabilities, pj|i = pj fj(t)/f(t) for j = 0, . . ., M, given the
urrent parameter estimates. The M-step calculates the updated
eans by

ˆ j =
∑I

i=1nipj|iti∑I
i=1nipj|i

,

nd uses the newly obtained means to calculate the updated
ariances by

ˆ 2
j =

∑I
i=1nipj|i(ti − μ̂j)2∑I

i=1nipj|i
, for j = 1, . . . , M.

Finally, the M-step calculates the updated proportions by

p̂j =
∑I

i=1nipj|i∑I
i=1ni

for j = 0, 1, . . . , M − 1, and

ˆ M = 1 −
M−1∑
j=0

p̂j.

Fig. 2 shows a fit of our model to the singly charged myo-
lobin peak and its satellite peaks. We ran the EM-iteration
rocess until convergence of the parameter estimates.

.4. Quantifying sources of variation

This section uses our mixture model analysis to quantify
he sources of variation, which we identified in Section 3. The
xpected peak positions have already been discussed in Sec-
ion 3.2. We first study the relation between the areas of the
eaks in the spectrum. We next elucidate on the quantification
f biological modifications. Then, we discuss the effect of peak
roadening due to the isotopic distribution. This section ends by
quantification of the detector noise and some notes about the

ffect of different machine settings.
Section 3.3 explained that we expect the peak area within a
iven spectrum to be approximately proportional to the corre-
ponding detected number of ions, i.e. the charged complexes
ormed during the desorption/ionization-process. We analyzed
he areas of two series of peaks in the spectrum displayed by

i
s

(

eries of m-mer peaks were rescaled and the areas of the series of the monomer
nd its satellite peaks were rescaled such that both series have the same sum of
he peak areas.

ig. 1. The m-mers (m = 1, 2, . . ., 5) form the first series of
eaks. The five triangles in Fig. 10 represent these five m-mers.
ig. 2a shows the singleton peaks, which together form the
ingly charged myoglobin peak. The circles in Fig. 10 repre-
ent these singleton peaks, which form the second series we
nalyzed. Fig. 10 shows that the proportions of the m-mers
how a log-linear decay with m. And, that the proportions of
he second series of peaks show log-linear decay with the total
umbers of molecules, which comprise the complex. The lines
how different slopes. Firstly, our sample contains many more
PA molecules than myoglobin molecules. Secondly, it might
e more likely that a myoglobin molecule, which is relatively
arge, forms a complex with one of the many SPA molecule
hich are relatively small, than that it forms a complex with
ne of the other less abundant and large myoglobin molecules.
hese two issues might explain why the second series shows a
teeper slope in Fig. 10.

We analyzed the same myoglobin sample twice, in dif-
erent runs. Myoglobin (16,951 Da) formed complexes with

reactive matrix molecules (206 Da), generating peaks at
6,951 Da + m × 206, for m = 0, 1, 2, . . . (Fig. 2a). Fig. 10
hows that the singleton peak areas decay log-linearly as func-
ion of m. Fig. 2b shows the spectrum obtained in the second
un, with the fourth singleton peak being larger than expected
n the basis of Fig. 2a. This peak corresponds to myoglobin
inked to a 616 Da compound, which probably is a heme-group.
he myoglobin-heme complex has a mass which is almost
qual to the myoglobin-m-matrix (m = 3) complex, because
× 206 Da = 618 Da. We found indeed a peak at 616 Da, which
as larger in sample 2a, where it exceeded the detection limit,

han in sample 2b. Our mixture model analysis should enable
he quantification of the biological modification, e.g. by analyz-

ng the deviation of the expected proportion of the considered
ingleton peak.

Isotopic peaks are distinguishable in the lower mass region
Fig. 3). In the higher mass region, peaks become negligibly
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roader due to the isotopic variation in comparison with the
ffect of the expanding ion cloud.

Fig. 9 shows a histogram of the signal intensities, which were
easured in a region without protein peaks. The normal distri-

ution (red line) fits well to the histogram. The protein signal
ncreases with the machine parameter, detector sensitivity. Fig. 4
hows the effect of different applied voltages. Fig. 6 shows the
ffect of the sensitivity settings on the singly charged myoglobin
eak. Fig. 5 illustrates the effect of laser energy. Each of the
ettings induces a larger area under the curve, when higher set-
ings are applied. However, only the applied laser energy affects
he numbers of ions. Our paper does not address variation due
o chips with different surface types, different positions on the
urface, and reproducibility issues.

. Discussion

Table 1 summarizes the discussed sources of variation
1)–(20) and their impact on the spectrum. We analyzed our
xperimental data for the sources (5) laser energy, (8) formation
f intermolecular complexes, (10) fragmentation of molecules
nd intermolecular complexes, (12) electric field potential,
13) delayed extraction, (14) detector sensitivity, (15) electric
oise, (16) detector noise, (18) m/z-calibration and (19) post-
ranslational modifications.

The many peaks in complex SELDI mass spectra might be
escribed in a parsimonious way by only a few major proteins.
e show, as is commonly known, that one protein species can

enerate about 10 major peaks and many minor satellite peaks.
dding another protein species to our sample might add another
0 major peaks and many minor peaks to our spectrum, which
re directly attributable to the new protein. However, if the two
roteins can bind to each other, many more peaks will show
p. In theory, the number of possible peaks increases exponen-
ially with the number of protein species in the sample. Affinity
etween different proteins can be biologically specific. Ana-
yzing peaks, which are generated by complexes comprising
wo proteins of two different species might indicate the affinity
etween the two species. However, their affinity under SELDI
xperimental conditions might not represent their affinity in
ivo.

Proteins consist of H, C, N, S and O atoms which all have
known isotopic mass distribution. Singleton peaks can be fur-

her decomposed in isotopic peaks by using our approach, which
hould enable the accurate prediction of the atomic composi-
ion of the proteins. However, it remains to be seen whether the
esolution in SELDI spectra is high enough to do so.

Sample and matrix molecules which form complexes and/or
arry multiple charges do not well explain the many reproducible
eaks which we observe; e.g. the peaks between 20 and 40 �s in
ig. 6. MALDI is generally characterized by little prompt frag-
entation [5]. Hence, we might expect that these reproducible

eaks are mainly caused by sample impurities and by molecules

hich are formed by chemical reactions which frequently take
lace on the chip. The chemical reactions can take place between
ample protein molecules, matrix molecules, molecules from the
ashing buffer and molecules from sample impurities. We now

p
m
F
o

gr. B 847 (2007) 12–23

ive a hypothesis for the left tail of the 80 �s peak. Higher laser
nergy increases the thermal energy and gives ions a higher ini-
ial velocity. We applied a very short extraction delay. Hence,
ven the fast myoglobin ions passed through a large part of the
eld, ending up with a higher initial velocity and arriving earlier
t the detector. A longer extraction delay would probably slow
own the faster ions, diminishing the left tail.

Our model uses three parameters per (normal) component
i.e. μ, σ and p). Reducing the number of parameters improves
he robustness of the estimation procedure but can give a worse
t. Combining parameters might be considered when analyzing
omplex spectra. The position parameters, μ, could be con-
ected by making use of the known relations between the peak
ositions in the spectrum as described (cf. Section 3.2, e.g. if

is the position of the monomer, then 2μ is the position of
he dimer). The satellite peaks of a given protein peak can, for
xample, be combined in a simple relation because the satellite
eaks are known to occur equidistant on mass scale (at +206 Da
n our examples). We observed log-linear relationships between
he proportion parameters, p. The parameter σ can be consid-
red as a monotonously increasing function of TOF because it
s related to the size of the ion clouds, which depends mainly
n TOF. Peaks, which get a larger σ than expected based on
he relation of σ with TOF, might indicate that the complexes,
hich correspond to the peak occur in multiple biological vari-

nts with slight mass differences. Myoglobin, for example, can
e oxidized (an O atom has a mass of 16 Da) multiple times (m)
hich results in extra peaks at +m × 16 Da with respect to the
ain myoglobin peak [8]. The oxygen adduct peaks would show

trong overlap in SELDI spectra.
In ref. [2], we analyze multiple SELDI spectra (8 from adi-

ose tissue and 64 from serum) and use log-normal distributions
o fit peaks. Our current paper shows that the peak can be further
econvoluted with mixtures of normal distributions (at the price
f many more components). The next step is to build models
ith interrelationships between μ’s and σ’s and p’s explicably

ncorporated. It remains to be seen whether complex spectra can
hen be “corrected” for the main “families” of peaks arising from
ingle molecules/complexes.

We believe that our study of sources of variation and our
omputational methods are of great value to biomarker discov-
ry for the following reasons: (i) proteins with approximately
he same mass will show-up with overlapping peaks in SELDI-
OF spectra. Our methods developed in ref. [2] and in the current
anuscript make it possible to correctly deconvolute the spec-

rum, which will result in more accurate and reliable estimates
f protein abundance. (ii) A given protein can show up at multi-
le locations in a SELDI-TOF spectrum as shown in Fig. 1. Our
ethods developed in the current manuscript make it possible

o deconvolute a spectrum in a more meaningful way by appro-
riately linking the peaks that correspond to the same protein.
e have shown how to do this for relatively simple samples, and

nticipate that the same strategy will also work in more com-

lex mixtures. (iii) SELDI-TOF spectra obtained with different
achine settings can look quite differently as demonstrated in
igs. 4–7. Our preliminary experiments suggest that a laser pulse
f 230 �J (Fig. 5) and an extraction delay of 1437 ns (Fig. 7)
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ive the best peak resolution. Further research, preferably using
multifactorial statistical design for experimentation, should

onfirm or improve these settings.
We strongly believe that better pre-processing of data from

ELDI-TOF spectra generates more accurate and reliable esti-
ates of protein abundance, which in turn will lead to more

eliable and powerful biomarker discovery.
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